

# The contractile activities of lipoxin A<sub>4</sub> and lipoxin B<sub>4</sub> for guinea-pig airway tissues

Crawford A.J. Jacques, Bernd W. Spur, Attilio E.G. Crea, <sup>1</sup>Tak H. Lee

Department of Medicine, United Medical and Dental Schools, Guy's Hospital, London SE1 9RT

- 1 The isometric contractile activities of lipoxin A<sub>4</sub> (LxA<sub>4</sub>) and lipoxin B<sub>4</sub> (LxB<sub>4</sub>) were evaluated on guinea-pig lung tissue over the concentration range,  $10^{-8}$  to  $10^{-5}$  M.
- 2 LxA<sub>4</sub> contracted guinea-pig lung parenchymal strips; the concentration eliciting 50% maximum histamine response was  $3 \times 10^{-6}$  M. LxA<sub>4</sub> did not contract tracheal spirals.
- 3 The LxA<sub>4</sub> dose-response curve was parallel to that of leukotriene D<sub>4</sub> (LTD<sub>4</sub>) with LxA<sub>4</sub> being approximately 10,000 fold less potent than LTD<sub>4</sub>.
- 4 The time course of the contraction elicited by LxA<sub>4</sub> was similar to that of LTD<sub>4</sub> and it was slow in onset and did not plateau for 20 min.
- 5 Pre-incubation of parenchymal strips with leukotriene receptor antagonists at a concentration of  $1 \times 10^{-6}$  M to  $3 \times 10^{-5}$  M FPL 55712 or  $3 \times 10^{-5}$  M L 649923 inhibited LxA<sub>4</sub> activity.
- 6 Pre-incubation of tissues with  $1 \times 10^{-5}$  M L 651392, a 5-lipoxygenase inhibitor, or  $1 \times 10^{-5}$  M indomethacin, a cyclo-oxygenase inhibitor, did not affect the contractile activity of LxA<sub>4</sub>.
- 7 LxB<sub>4</sub> did not constrict parenchymal strips or tracheal spirals.

## Introduction

Non-esterified arachidonic acid may be metabolized by cyclo-oxygenase or lipoxygenase pathways (Samuelsson, 1983). Three major lipoxygenase pathways have been identified in mammalian tissues. These include the 5-, 12- and 15-lipoxygenases which transform arachidonic acid into a number of biologically active metabolites. The 5-lipoxygenase pathway converts arachidonic acid to 5S-hydroperoxy-6,8,11,14 eicosatetraenoic acid which may be further transformed into leukotrienes (Samuelsson, 1983). Leukotriene B<sub>4</sub> (LTB<sub>4</sub>) is a potent chemotactic agent (Ford-Hutchinson *et al.*, 1980; Palmer *et al.*, 1980; Nagy *et al.*, 1982; Soter *et al.*, 1983; Camp *et al.*, 1983) and is a complete secretagogue in human neutrophils (PMN) (Showell *et al.*, 1982). Leukotriene C<sub>4</sub>, D<sub>4</sub> and E<sub>4</sub> (LTC<sub>4</sub>, LTD<sub>4</sub> and LTE<sub>4</sub>) comprise the activity previously known as slow reacting substance of anaphylaxis (SRS-A) (Murphy *et al.*, 1979; Orning *et al.*, 1980; Morris *et al.*, 1980; Lewis *et al.*, 1980; Piper, 1984). These sulfidopeptide leukotrienes increase vascular permeability and contract non-vascular smooth muscle. The leukotrienes all contain a conjugated triene structure (Figure 1) and may serve as important mediators in both immediate hypersensitivity reac-

tions and in inflammatory processes (Samuelsson, 1983).

Recently a novel series of arachidonic acid-derived metabolites have been described as being produced through the interactions of the 5- and 15-lipoxygenase pathways (Serhan *et al.*, 1984a,b). The distinguishing feature of these metabolites is the presence of a trihydroxy tetraene structure (Figure 1). Since these metabolites arise from the interaction of multiple distinct lipoxygenase pathways, the name lipoxins has been designated for this series of compounds. Two biologically active lipoxins have been identified, lipoxin A<sub>4</sub> (LxA<sub>4</sub>) and lipoxin B<sub>4</sub> (LxB<sub>4</sub>). LxA<sub>4</sub> is 5,6,15-trihydroxy-7,9,11,13-eicosatetraenoic acid (Serhan *et al.*, 1986a) and LxB<sub>4</sub> is 5,14,15-trihydroxy-6,8,10,12-eicosatetraenoic acid (Serhan *et al.*, 1986b).

Information on the biological activities of these compounds is very limited. The available data indicate that LxA<sub>4</sub>, but not LxB<sub>4</sub> contracts guinea-pig lung parenchymal strips (Serhan *et al.*, 1986a), is chemokinetic for human neutrophils (Spur *et al.*, 1988) and induces superoxide anion generation and elastase release from human neutrophils (Serhan *et al.*, 1985). Human natural killer cells exposed to either LxA<sub>4</sub> or LxB<sub>4</sub> are unable to provoke target cell lysis (Ramstedt *et al.*, 1985). The relative lack of data on

<sup>1</sup> Author for correspondence.

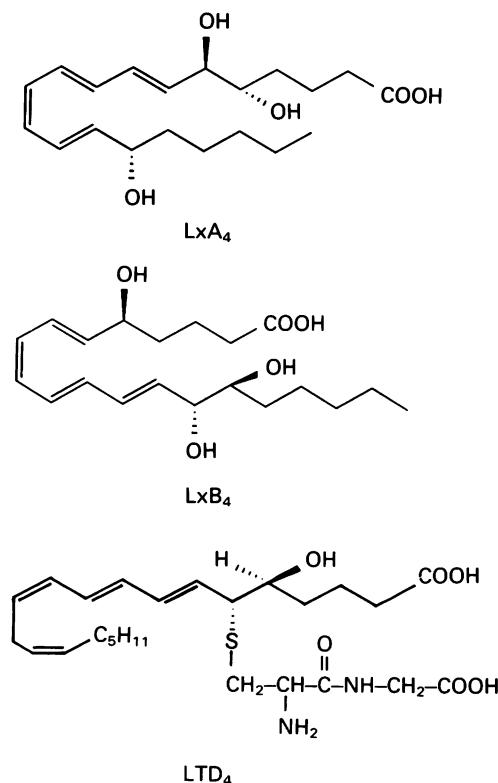
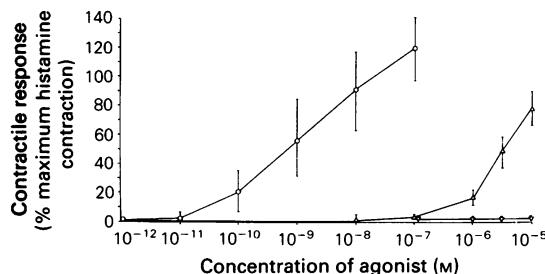



Figure 1 Structures of lipoxin A<sub>4</sub> (LxA<sub>4</sub>), lipoxin B<sub>4</sub> (LxB<sub>4</sub>) and leukotriene D<sub>4</sub> (LTD<sub>4</sub>).

the biological function of these compounds has been due partly to the difficulty in isolating sufficient quantities of lipoxins from biological samples caused by the transformation of metabolites to inactive isomers during the purification process (Serhan *et al.*, 1986a,b; Morris & Wishka, 1986; Spur *et al.*, 1988). We were therefore prompted to prepare LxA<sub>4</sub> and LxB<sub>4</sub> by total chemical synthesis in sufficient quantities for biological evaluation. We have studied the potencies of these compounds in contracting lung tissue and have compared the mechanisms of contractions induced by lipoxins, LTD<sub>4</sub> and LTB<sub>4</sub>.

## Methods

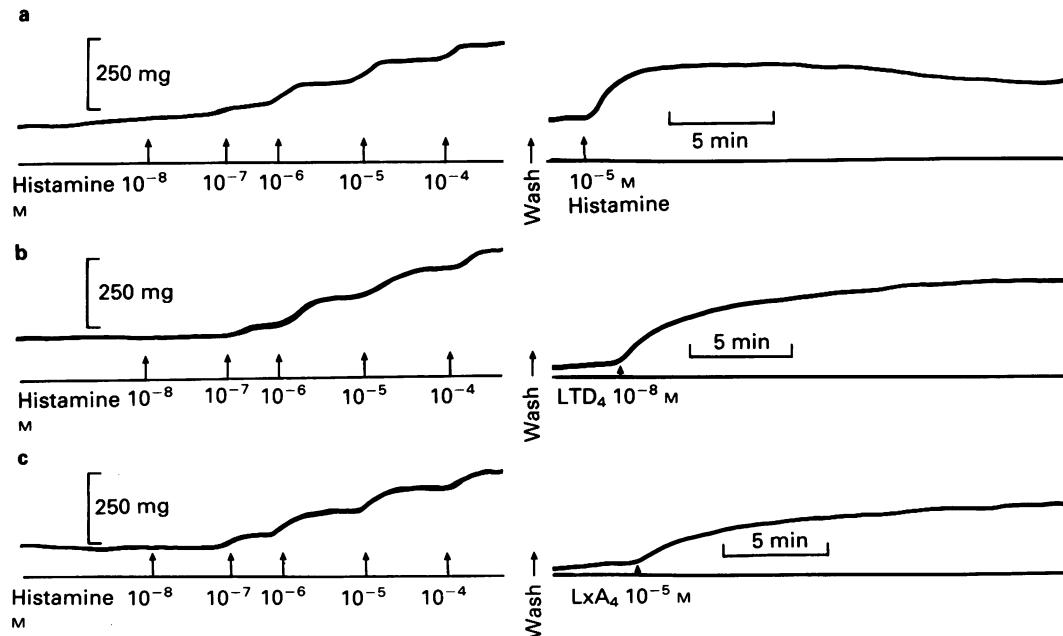
Tracheal spirals and parenchymal strips were obtained from male guinea-pigs (250–300 g body weight) and they were prepared *in vitro* for recording of isometric contraction after stable baseline tensions had been established as previously described (Lee *et al.*, 1984). The tissues were exposed to logarithmically increasing concentrations of histamine (0.1–


100  $\mu\text{M}$ ) (Sigma) to construct a cumulative histamine concentration-effect relationship for each tissue preparation. The contraction elicited by 100  $\mu\text{M}$  histamine was assigned to a value of 100 and all subsequent contractile responses to any agonists in that tissue were expressed as a percentage of this reference contraction. After completion of the initial histamine dose-response curve, the tissues were washed with oxygenated Krebs solution maintained at 37°C and aerated with 95% O<sub>2</sub> and 5% CO<sub>2</sub> at 15 min intervals for 45 min. During this time the tension of each tissue returned to that recorded before histamine exposure. The tissues were then used to establish a cumulative dose-response curve for LTD<sub>4</sub>, LTB<sub>4</sub>, LxA<sub>4</sub> or LxB<sub>4</sub>.

Synthetic compounds were prepared by total chemical synthesis (Spur *et al.*, 1988) and their stereochemistries were confirmed by nuclear magnetic resonance. Prior to the bioassays, the concentrations of leukotrienes and lipoxins were checked by ultraviolet absorbance at 280 nm for LTD<sub>4</sub> assuming a molar extinction coefficient ( $\Sigma$ ) of 40,000  $\text{cm}^{-1}\text{M}^{-1}$ , at 269 nm for LTB<sub>4</sub> using an  $\Sigma$  of 51,000  $\text{cm}^{-1}\text{M}^{-1}$ , and at 301 nm for the lipoxins using an  $\Sigma$  of 71,000  $\text{cm}^{-1}\text{M}^{-1}$ . The substances were diluted in 9 g litre<sup>-1</sup> saline solution and added to organ baths to establish cumulative dose-response curves within the range of 0.01 nM–100 nM for LTD<sub>4</sub> and 1 nM–10  $\mu\text{M}$  for LTB<sub>4</sub> and for the lipoxins. In selected experiments, tissues were pre-incubated for 30 min at 37°C with defined concentrations of FPL 55712 (7-[3-(4-acetyl-3-hydroxy-2-propylphenoxy)-2-hydroxypropoxy]-4-oxo-8-propyl-4H-1-benzopyran-2-carboxylic acid, Fisons), L 649923 (sodium( $\beta$ 5\*,  $\gamma$ R\*)-4-(3-(4-acetyl-3-hydroxy-2-propylphenoxy)propylthio)- $\gamma$ -hydroxy- $\beta$ -methylbenzene-butanoate, Merck Frosst), indomethacin (Sigma) or L 651392 (4-bromo-2,7-dimethoxy-3H-phenothiazin-3-one, Merck Frosst) (Young *et al.*, 1986) a 5-lipoxygenase inhibitor (Guindon *et al.*, 1987), prior to the establishment of cumulative dose-response curves to leukotrienes and lipoxins. In separate experiments, parenchymal tissues were pre-incubated for 30 min at 37°C with a combination of 10<sup>-5</sup> M indomethacin and 10<sup>-5</sup> M mepyramine in the presence and absence of 10<sup>-5</sup> M L651392. The tissues were then stimulated to constrict with 0.1 to 10  $\mu\text{M}$  calcium ionophore.

Statistical analysis was performed by Student's *t* test for non paired data.

## Results

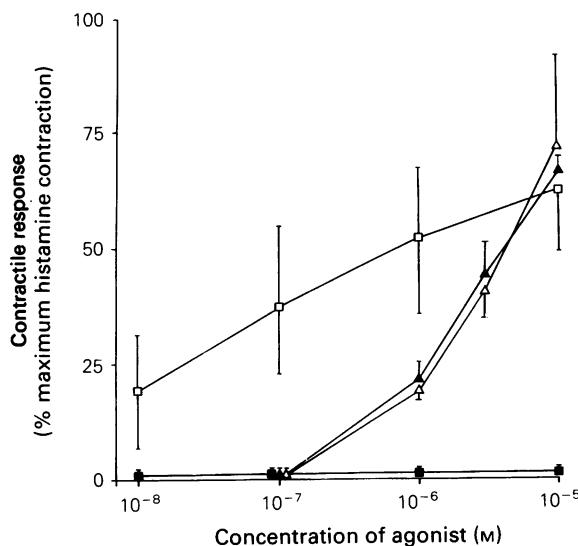

LxA<sub>4</sub> and LTD<sub>4</sub> elicited a dose-dependent contraction of guinea-pig lung parenchymal strips and the dose-response curves were parallel (Figure 2). The concentration of LxA<sub>4</sub> which produced 50% of the



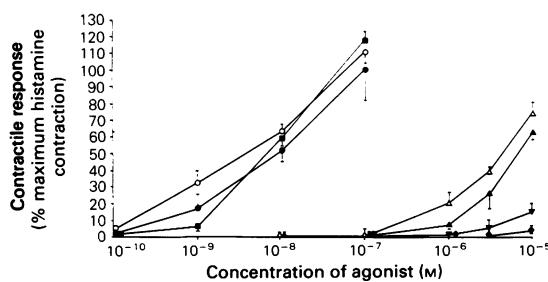
**Figure 2** The effect of increasing concentrations of leukotriene D<sub>4</sub> (LTD<sub>4</sub>, ○), lipoxin A<sub>4</sub> (LxA<sub>4</sub>, △) and lipoxin B<sub>4</sub> (LxB<sub>4</sub>, ▽) on contractile responses of guinea-pig parenchymal strips. Each point represents mean of 6, 24 and 8 tissues for the LTD<sub>4</sub>, LxA<sub>4</sub> and LxB<sub>4</sub> experiments, respectively; vertical bars show s.d.

maximal histamine response (EC<sub>50</sub>) was  $3 \times 10^{-6}$  M and the response had not plateaued by  $1 \times 10^{-5}$  M. By interpolation,  $5 \times 10^{-10}$  M LTD<sub>4</sub> would elicit the same response as the EC<sub>50</sub> of LxA<sub>4</sub>, thereby indicating that LTD<sub>4</sub> was approximately 10,000 fold more potent than LxA<sub>4</sub>. LxB<sub>4</sub> did not contract parenchymal strips.

The time courses of the contractions produced by LxA<sub>4</sub> and LTD<sub>4</sub> were different from that elicited by




**Figure 3** The time course of the contraction elicited by histamine (a), leukotriene D<sub>4</sub> (LTD<sub>4</sub>, b) and lipoxin A<sub>4</sub> (LxA<sub>4</sub>, c) on guinea-pig parenchymal strips. One representative experiment on three separate tissues is shown. The cumulative histamine concentration-effect relationship for each tissue was initially established (left hand panels). Following washing, the tissues were each exposed to a defined concentration of one of the agonists and the time courses of the contractions were recorded (right hand panels).


histamine. A representative example is shown in Figure 3. Histamine consistently produced a rapid onset of contraction which had plateaued by 2 min. Both LTD<sub>4</sub> and LxA<sub>4</sub> produced contractile reactions which were slow in onset and did not plateau until 20 min.

LTD<sub>4</sub> elicited a dose-dependent contraction of parenchymal strips. The LTD<sub>4</sub> dose-response curve was dissimilar to that of LxA<sub>4</sub> (Figure 4). The concentration of LTD<sub>4</sub> which produced 30% of the maximal histamine response (EC<sub>30</sub>) and the EC<sub>50</sub> were  $4 \times 10^{-8}$  M and  $8 \times 10^{-7}$  M, respectively. The EC<sub>30</sub> and EC<sub>50</sub> for LxA<sub>4</sub> were  $1.5 \times 10^{-6}$  M and  $5 \times 10^{-6}$  M respectively. In order to assess whether the contractile activity of LxA<sub>4</sub> on parenchymal strips was related to the secondary generation of cyclo-oxygenase products, the contractile activity of LxA<sub>4</sub> was evaluated with and without  $10^{-5}$  M indomethacin pretreatment (Figure 4). There was no significant difference in the contractile response elicited by LxA<sub>4</sub> in the absence and presence of this drug. In contrast, the contractile activity of LTD<sub>4</sub> was completely inhibited by premedication with indomethacin.

The pre-incubation of parenchymal strips with increasing concentrations of FPL 55712 produced a dose-dependent inhibition of the contractile response



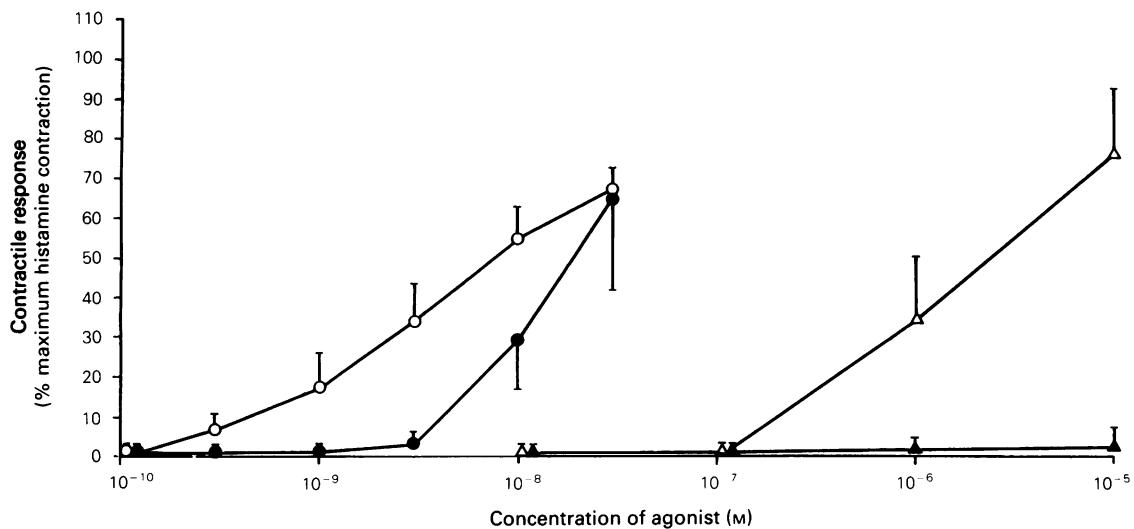
**Figure 4** The effect of increasing concentrations of leukotriene B<sub>4</sub> (LTB<sub>4</sub>) and lipoxin A<sub>4</sub> (LxA<sub>4</sub>) on contractile responses of guinea-pig parenchymal strips, in the absence and presence of 1 × 10<sup>-5</sup> M indomethacin. The LTB<sub>4</sub> and LxA<sub>4</sub> dose-response curves constructed without indomethacin pretreatment are indicated by (□) and (△) respectively, and with indomethacin pretreatment are indicated by (■) and (▲) respectively. Each point is the mean of 6 and 5 tissues for the LTB<sub>4</sub> and LxA<sub>4</sub> experiments, respectively; vertical bars show s.d.



**Figure 5** The effect of increasing concentrations of FPL 55712 on the leukotriene D<sub>4</sub> (LTD<sub>4</sub>) and lipoxin A<sub>4</sub> (LxA<sub>4</sub>) dose-contraction curves on guinea-pig parenchymal strips. The LTD<sub>4</sub> dose-response curves constructed without and with pretreatment with 1 × 10<sup>-6</sup> M and 1 × 10<sup>-5</sup> M FPL 55712 are indicated by (○), (●) and (■) respectively. LxA<sub>4</sub> dose-response curves constructed without and with 1 × 10<sup>-6</sup> M, 1 × 10<sup>-5</sup> M and 3 × 10<sup>-5</sup> M FPL 55712 pretreatment are indicated by (△), (▲), (▽) and (◆) respectively. Each point is the mean of 6 and 8 tissues for the LTD<sub>4</sub> and LxA<sub>4</sub> experiments, respectively; vertical bars show s.d.

to all the active concentrations of LxA<sub>4</sub> studied (Figure 5). There was a parallel displacement of the LxA<sub>4</sub> dose-response curve to the right by 10<sup>-6</sup> M FPL 55712. 1 × 10<sup>-6</sup> M and 1 × 10<sup>-5</sup> M, FPL 55712 produced a significant inhibition of the contractile activity of 10<sup>-9</sup> M LTD<sub>4</sub> only ( $P = 0.002$  and  $P = 0.001$ , respectively) and the inhibition was not seen at higher concentrations of LTD<sub>4</sub> (Figure 5).

Preincubation of parenchymal strips with 3 × 10<sup>-5</sup> M L 649923 produced an inhibition of the contractions elicited by LxA<sub>4</sub> at all the concentrations studied (Figure 6). Pretreatment of lung tissue with the same dose of L 649923 produced an inhibition of the contractions induced by 5 × 10<sup>-9</sup> M to 3 × 10<sup>-8</sup> M LTD<sub>4</sub> (Figure 6).


In separate experiments, histamine dose-response curves were constructed in the presence or absence of either 3 × 10<sup>-5</sup> M FPL 55712 or 3 × 10<sup>-5</sup> M L 649923. There was no difference in the histamine dose-response curves between any of these experiments, indicating that this concentration of FPL 55712 and L 649923 did not have a non-specific spasmolytic action. The EC<sub>50</sub> for histamine of control, FPL 55712- and L 649923-treated tissues were 1.9 × 10<sup>-6</sup> M (mean,  $n = 4$ ), 1.8 × 10<sup>-6</sup> M (mean,  $n = 6$ ) and 2.1 × 10<sup>-6</sup> M (mean,  $n = 3$ ), respectively.

The incubation of parenchymal strips with 10<sup>-6</sup> M and 10<sup>-5</sup> M L 651392, a 5-lipoxygenase inhibitor, produced no inhibitory effect on the activity of LxA<sub>4</sub> (Figure 7a). In separate experiments as controls, parenchymal strips were pretreated with 1 × 10<sup>-5</sup> M indomethacin and 1 × 10<sup>-5</sup> M mepyramine in the presence or absence of 1 × 10<sup>-5</sup> M L 651392, a 5-lipoxygenase inhibitor. The tissues were then stimulated to contract in a dose-dependent manner with 0.1–10.0 μM calcium ionophore. In those tissues that were pre-incubated with indomethacin and mepyramine, in order to uncover the 5-lipoxygenase, and then were subsequently contracted by ionophore, the EC<sub>50</sub> was 4.4 × 10<sup>-6</sup> M. The EC<sub>50</sub> of tissues treated with L 651392, indomethacin and mepyramine and then contracted by ionophore was 1 × 10<sup>-5</sup> M (Figure 7b).

LxA<sub>4</sub> and LxB<sub>4</sub> did not contract tracheal spirals. LTD<sub>4</sub> produced a dose-dependent contraction of tracheal smooth muscle and the EC<sub>50</sub> was 3 × 10<sup>-8</sup> M.

## Discussion

A novel series of arachidonic acid derived metabolites produced through the interaction of the 5- and 15-lipoxygenase pathways have been evaluated on guinea-pig lung tissue. The biologically active compounds were prepared by total organic synthesis and




**Figure 6** The effect of  $3 \times 10^{-5}$  M L 649923 on the leukotriene D<sub>4</sub> (LTD<sub>4</sub>) and lipoxin A<sub>4</sub> (LxA<sub>4</sub>) dose-contractile response curves on guinea-pig parenchymal strips. The LTD<sub>4</sub> dose-response curves constructed in the absence and presence of  $3 \times 10^{-5}$  M L 649923 are indicated by (○) and (●), respectively. LxA<sub>4</sub> dose-response curves constructed in the absence and presence of  $3 \times 10^{-5}$  M L 649923 are indicated by (Δ) and (▲), respectively. Each point is the mean of 8 and 4 tissues for the LTD<sub>4</sub> and LxA<sub>4</sub> experiments respectively; vertical bars show s.d.

their authenticities were confirmed unequivocally by nuclear magnetic resonance and comparisons with biologically derived materials (Nicolaou *et al.*, 1985; Nicolaou & Webber, 1986). The results indicate that LxA<sub>4</sub>, but not LxB<sub>4</sub>, possessed contractile activity for guinea-pig lung parenchymal strips but not for tracheal smooth muscle over the concentration-range studied. These findings suggest that the presence of the hydroxyl groups at C-5 and C-6 positions of LxA<sub>4</sub> is critical for the expression of contractile activity. LxA<sub>4</sub> and LTD<sub>4</sub> demonstrated dose-contractile response curves which were parallel but LxA<sub>4</sub> was substantially less potent than LTD<sub>4</sub> in contracting parenchymal strips. The time course of the response to LxA<sub>4</sub> was virtually identical to that of LTD<sub>4</sub>. LTB<sub>4</sub> was more potent than LxA<sub>4</sub> and the dose-response curves elicited by LTB<sub>4</sub> and LxA<sub>4</sub> were dissimilar. The contractile response to LxA<sub>4</sub> was not inhibited by  $10^{-5}$  M indomethacin, a concentration that inhibited the cyclo-oxygenase product-dependent contraction produced by LTB<sub>4</sub> (Sirois *et al.*, 1981). These results indicate that LxA<sub>4</sub> activity was not mediated through the secondary generation of cyclo-oxygenase metabolites.

Since the time courses of the contractile response induced by LxA<sub>4</sub> and LTD<sub>4</sub> were very similar, we were prompted to evaluate the effects of two LTD<sub>4</sub> antagonists, FPL 55712 and L 649923, on the activ-

ity of LxA<sub>4</sub> and LTD<sub>4</sub>. FPL 55712 and L 649923 inhibited LxA<sub>4</sub> action throughout the whole range of doses studied suggesting that LxA<sub>4</sub> may act through the LTD<sub>4</sub> receptor. The finding that FPL 55712 and L 649923 had no effect on histamine-induced contraction indicates that the inhibitory effect of these antagonists on LxA<sub>4</sub> action observed in this study was not due to a non-specific spasmolytic effect of these inhibitors.

Previous work has suggested that there may be different LTD<sub>4</sub> receptors in smooth muscle (Drazen *et al.*, 1980; Fleisch *et al.*, 1982b; Krell *et al.*, 1983). Drazen *et al.* demonstrated that FPL 55712 inhibited the contractile response in guinea-pig lung parenchymal strips at low concentrations of LTD<sub>4</sub>, which produced less than 30 to 40% of the maximal histamine contractile activity, but that it was without effect on the spasmogenic response to higher concentrations of LTD<sub>4</sub> (Drazen *et al.*, 1980). Our results confirm these observations. The differential effect of FPL 55712 on the contractions induced by low and high concentrations of LTD<sub>4</sub> in lung parenchymal strips has been interpreted as suggesting the presence of two classes of LTD<sub>4</sub> receptors in this tissue; a high affinity receptor that is inhibited by FPL 55712 and a low affinity receptor that is not affected by this antagonist (Drazen *et al.*, 1980). On the basis of our results with FPL 55712, the data would be consistent



**Figure 7** The effect of increasing concentrations of L 651392 on the lipoxin A<sub>4</sub> (LxA<sub>4</sub>, a) and calcium ionophore (A23187) (b) dose-response curves on guinea-pig parenchymal strips which had been pretreated with 1 × 10<sup>-5</sup> M indomethacin and 1 × 10<sup>-5</sup> M mepyramine. The LxA<sub>4</sub> dose-response curves constructed without and with pretreatment with 1 × 10<sup>-6</sup> M and 1 × 10<sup>-5</sup> M L 651392 are indicated by (Δ), (▲) and (■) respectively. The calcium ionophore dose-response curves constructed in the absence and presence of 1 × 10<sup>-5</sup> M L 651392 are indicated by (○) and (●) respectively. Each point is the mean of 6 and 3 tissues for the LxA<sub>4</sub> and calcium ionophore experiments, respectively; s.d. shown by vertical lines.

with the view that LxA<sub>4</sub> mediates its contractile activity through a similar mechanism to that utilised by low concentrations of LTD<sub>4</sub>.

In order to evaluate whether LxA<sub>4</sub> might have produced a contractile effect through the secondary release of SRS-A leukotrienes, LxA<sub>4</sub> dose-response curves were constructed in the absence and presence of a selective 5-lipoxygenase inhibitor, L 651392 (Guindon *et al.*, 1987). This had no effect on LxA<sub>4</sub> action, even though it partially inhibited the calcium ionophore-induced contraction of parenchymal tissue, which had been pretreated with an anti-histamine and a cyclo-oxygenase inhibitor to uncover the lipoxygenase contribution (Fleisch *et al.*, 1982a). These results indicate that LxA<sub>4</sub> did not

produce contractions through the secondary release of the sulfidopeptide leukotrienes.

In conclusion, LxA<sub>4</sub> but not LxB<sub>4</sub> has intrinsic spasmogenic activity which is selective for guinea-pig lung parenchymal strips over the concentration-range studied. The activity of LxA<sub>4</sub> is slow in onset and long lasting. It is substantially less potent than LTD<sub>4</sub> and may exert its effects on airway smooth muscle via the putative high affinity LTD<sub>4</sub> receptor.

The authors thank Drs J. Rokach and A. Ford-Hutchinson of Merck Frosst, Canada for the gift of L 651392 and L 649923. C.A.J.J. was supported by a PhD studentship from Glaxo Group Research.

## References

AUGSTEIN, J., FARMER, J.B., LEE, T.B., SHEARD, P. & TATTERSALL, M.L. (1973). Selective inhibitor of slow reacting substance of anaphylaxis. *Nature*, **245**, 215–217.

CAMP, R.D.R., COUTTS, A.A., GREAVES, M.W., KAY, A.B. & WALPORT, M.J. (1983). Response of human skin to intradermal injection of leukotrienes C<sub>4</sub>, D<sub>4</sub> and B<sub>4</sub>. *Br. J. Pharmacol.*, **80**, 497–502.

COREY, E.J., CLARK, D.A., MARFAT, A. & GOTO, G. (1980a). Total synthesis of slow reacting substances. *Tetrahedron Lett.*, **21**, 3143–3146.

COREY, E.J., CLARK, D.A., MARFAT, A., GOTO, G. & BRION, F. (1980b). Leukotriene B<sub>4</sub>, total synthesis and assignment of stereochemistry. *J. Am. Chem. Soc.*, **102**, 7984–7986.

DRAZEN, J.M., AUSTEN, K.F., LEWIS, R.A., CLARK, D.A., GOTO, G., MARFAT, A. & COREY, E.J. (1982). Comparative airway and vascular activities of leukotrienes C<sub>1</sub> and D in vivo and in vitro. *Proc. Natl. Acad. Sci. U.S.A.*, **77**, 4354–4358.

FLEISCH, J.H., HAISCH, K.D. & SPAETHE, S.M. (1982a). Slow reacting substance of anaphylaxis (SRS-A) release from guinea-pig lung parenchyma during antigen or ionophore-induced contraction. *J. Pharmacol. Exp. Ther.*, **221**, 146–151.

FLEISCH, J.H., RINKEMA, L.E. & BAKER, S.R. (1982b). Evidence for multiple leukotriene D<sub>4</sub> receptors in smooth muscle. *Life Sci.*, **31**, 577–581.

FORD-HUTCHINSON, A.W., BRAY, M.W., DOIG, M.V.,

SHIPLEY, M.E. & SMITH, M.J.H. (1980). Leukotriene B, a potent chemokinetic and aggregating substance from polymorphonuclear leukocytes. *Nature*, **286**, 264-265.

GUINDON, Y., GIRARD, Y., MAYCOCK, A., FORD-HUTCHINSON, A.W., ATKINSON, J.G., BELANGER, P., DALLOB, A., DE SONSA, D., DOUGHERTY, H., EGAN, R., GOLDENBERG, M.M., HAM, E., FORTIN, R., HAMEL, P., HAMEL, R., LAU, C.K., LE BLANC, Y., MCFARLANE, C.S., PIECHUTA, H., THERIEN, M., YOAKIM, C. & ROKACH, J. (1987). L651,392: a novel, potent and selective 5-lipoxygenase inhibitor. *Advances in Prostaglandin, Thromboxane and Leukotriene Research*, Vol. 17, ed. Samuelsson, B., Paoletti, R. & Ramwell, P.W., pp. 554-557.

KRELL, R.D., TSAI, B.S., BERDOULAY, A., BARONE, M. & GILES, R.E. (1983). Heterogeneity of leukotriene receptors in guinea-pig trachea. *Prostaglandins*, **25**, 171-179.

LEE, T.H., AUSTEN, K.F., COREY, E.J. & DRAZEN, J.M. (1984). LTE<sub>4</sub>-induced airway hyperresponsiveness of guinea pig tracheal smooth muscle to histamine and evidence for three separate sulfidopeptide leukotriene receptors. *Proc. Natl. Acad. Sci. U.S.A.*, **81**, 4922-4925.

LEWIS, R.A., DRAZEN, J.M., AUSTEN, K.F., CLARK, D.A. & COREY, E.J. (1980). Identification of the C(6)-S-conjugate of leukotriene A with cysteine as a naturally occurring slow reacting substance of anaphylaxis (SRS-A). Importance of the 11-cis geometry for biological activity. *Biochem. Biophys. Res. Commun.*, **96**, 271-277.

MORRIS, H.R., TAYLOR, G.W., PIPER, P.J. & TIPPINS, J.R. (1980). Structure of slow reacting substance of anaphylaxis from guinea pig lung. *Nature*, **285**, 104-105.

MORRIS, J. & WISHKA, D.G. (1986). Synthesis of lipoxin B. *Tetrahedron Lett.*, **27**, 803-806.

MURPHY, R.C., HAMMARSTROM, S. & SAMUELSSON, B. (1979). Leukotriene C: a slow reacting substance from murine mastocytoma cells. *Proc. Natl. Acad. Sci. U.S.A.*, **76**, 4275-4279.

NAGY, L., LEE, T.H., GOETZL, E.J., PICKETT, W.C. & KAY, A.B. (1982). Complement receptor enhancement and chemotaxis of human neutrophils and eosinophils by leukotrienes and other lipoxygenase products. *Clin. Exp. Immunol.*, **47**, 541-547.

NICOLAOU, K.C., VEALE, C.A., WEBBER, S.E. & KATERINOPOULOS, H. (1985). Stereocontrolled total synthesis of lipoxins A. *J. Am. Chem. Soc.*, **107**, 7515-7518.

NICOLAOU, K.C. & WEBBER, S.E. (1986). Stereocontrolled total synthesis of lipoxins B. *Synthesis*, 453-461.

ORNING, L., HAMMERSTROM, S. & SAMUELSSON, B. (1980). Leukotriene D: a slow reacting substance from rat basophilic leukemia cells. *Proc. Natl. Acad. Sci. U.S.A.*, **77**, 2014-2018.

PIPER, P.J. (1984). Formation and actions of leukotrienes. *Physiol. Rev.*, **64**, 744-762.

PALMER, R.M.J., STEPHNEY, R.J., HIGGS, G.A. & EAKINS, K.E. (1980). Chemokinetic activity of arachidonic and lipoxygenase products on leukocytes of different species. *Prostaglandins*, **20**, 411-414.

RAMSTEDT, U., JANET, N.G., WIGZELL, H., SERHAN, C.N. & SAMUELSSON, B. (1985). Action of novel eicosanoids lipoxin A and B on human natural killer cell cytotoxicity: effects on intracellular cAMP and target cell binding. *J. Immunol.*, **135**, 1-5.

SAMUELSSON, B. (1983). Leukotrienes: mediators of immediate hypersensitivity reactions and inflammation. *Science*, **220**, 568-575.

SERHAN, C.N., HAMBERG, M. & SAMUELSSON, B. (1984a). Trihydroxytetraenes: a novel series of compounds formed from arachidonic acid in human leukocytes. *Biochem. Biophys. Res. Commun.*, **118**, 943-949.

SERHAN, C.N., HAMBERG, M. & SAMUELSSON, B. (1984b). Lipoxins: A novel series of biologically active compounds formed from arachidonic acid in human leukocytes. *Proc. Natl. Acad. Sci. U.S.A.*, **81**, 5335-5339.

SERHAN, C.N., HAMBERG, M. & SAMUELSSON, B. (1985). Lipoxins: a novel series of biologically active compounds. In *Prostaglandins, Leukotrienes and Lipoxins*, ed. Martyn Bailey, J., pp. 3-16. New York: Plenum Publishing Corporation.

SERHAN, C.N., NICOLAOU, K.C., WEBBER, S.E., VEALE, C.A., DAHLEN, S.E., PUUSTINEN, T.J. & SAMUELSSON, B. (1986a). Lipoxin A: Stereochemistry and biosynthesis. *J. Biol. Chem.*, **261**, 16340-16345.

SERHAN, C.N., HAMBERG, M., SAMUELSSON, B., MORRIS, J. & WISHKA, D. (1986b). On the stereochemistry and biosynthesis of lipoxin B. *Proc. Natl. Acad. Sci. U.S.A.*, **83**, 1983-1987.

SHOWELL, H.J., NACCACHE, P.H., BORGEAT, P., PICARD, S., VALLERAND, P., BECKER, E.L. & SHA'FI, R.I. (1982). Characterisation of the secretory activity of leukotriene B<sub>4</sub> toward rabbit neutrophils. *J. Immunol.*, **128**, 811-816.

SIROIS, P., ROY, S. & BORGEAT, P. (1981). The lung parenchymal strip as a sensitive assay for leukotriene B<sub>4</sub>. *Prostaglandins Med.*, **6**, 153-159.

SOTER, N.A., LEWIS, R.A., COREY, E.J. & AUSTEN, K.F. (1983). Local effects of synthetic leukotrienes (LTC<sub>4</sub>, LTD<sub>4</sub>, LTE<sub>4</sub> and LT<sub>B</sub><sub>4</sub>) in human skin. *J. Invest. Dermatol.*, **80**, 115-119.

SPUR, B., CREA, A. & LEE, T.H. (1988). Synthesis and biological comparison of lipoxins derived from arachidonic acid and eicosapentaenoic acid. In *Lipoxins: Biosynthesis and Pharmacology*, ed. Wang, P. & Serhan, C. New York: Plenum Publishing Corp.

YOUNG, R.N., CHAMPION, E. & CHARETTE, L. (1986). Design and synthesis of sodium (beta R\*, gamma S\*)-4-((3-(4-acetyl-3-hydroxy-2-propylphenoxy)propyl)thio)-gamma-hydroxy-beta-methylbenzene-butanoate: a novel, selective, and orally active receptor antagonist of leukotriene D<sub>4</sub>. *J. Med. Chem.*, **29**, 1573-1576.

(Received October 29, 1987)

Revised April 2, 1988

Accepted May 10, 1988)